

Presenters

Kellie Wark, MD MPH

Antimicrobial Stewardship Co-Lead Kansas Department of Health and Environment Asst. Professor of Infectious Disease The University of Kansas Health Systems <u>kwark@kumc.edu</u> / <u>kellie.wark@ks.gov</u>

To protect and improve the health and environment of all Kansans

Nikki Wilson, PharmD BCIS

Antimicrobial Stewardship Co-Lead, Kansas Department of Health and Environment Antibiotic Stewardship Clinical Coordinator, The University of Kansas Health System nwilson5@kumc.edu / nicole.wilson@ks.gov

	12 am	10 am	3 pm	9 pm
Med-Surg	X		X	X
ICU				
Operating Room				
	Patient da	i ys: 1 Days Da Da	s Present: 2 hys Present, Med hys Present, ICU:	-Surg: 1 0

Breakout Rooms!

Select your desired breakout room based on your level of comfort with antimicrobial utilization metrics

• You may change breakout rooms if you find the content is too basic or advanced for your needs

Breakout I: Essentials of Antimicrobial Stewardship Metrics

- Discussion of commonly utilized metrics (C. difficile infections, Cost, DDD calculation)
- Interpretation and information sharing with clinicians

Breakout II: Advanced Metrics

- Interpretation of DOTs with parallel initiatives and confounders
- Review of standardized antimicrobial administration ratio and benchmarking

Example			
	Cost = Utiliza	tion x Price	9
Program A	nnual Costs: theor	etical example o	of micafungin
Year	Price per Dose	Annual Purchases	Total Spent
2018	\$350	1000	\$350,000
2019	\$300	1000	\$300,000
2020	\$75	2000	\$150,000
0004	\$50	3000	\$150,000

Exar	nple							
Report	of Janua	ry ceftriaxo	ne use					
• 100 d What's	total DDI	D?	one z g		סס	<u>Total</u> D Corre ↓	<u>Jnits</u> ction	<u>Abx</u> Factor
Dose	Route	Total Dispensed	Total amt (mg)	Total amt (g)	WHO DDD	Calcul	lation	CTX DDD
2000 mg	IV	100	200,000	200	2	200	/ 2	100
LQ	Route	DDD	Total pt days		Calcula	tion	DDD / 1	000 pt days
2000 mg	IV	100	7,500	(10	00 / 7,500) x 1000		13.333
					To protect a	nd improve the health	and environmen	nt of all Kansans

Example

...

Report of January ceftriaxone use

.

- 100 doses of IV ceftriaxone 2 mg
- 10 doses of IM ceftriaxone 500 mg

<u>Total Units (gg) Abx</u> DDD Correction Factor

Total Units Abx

Dose	Route	Tot D	ispensed	Total amt (mg)	Total amt (g)	WHO DDD	Calcu	lation	CTX DDD
2000 mg	IV		100	200,000	200	2	200	/2	100
500 mg	IM		10	225,000	225	2	225	5/2	112.5
СТХ	R	oute	DDD	Total pt day	ys Ca	alculation	C	DDD / 10	00 pt days
2000 mg		IV	100	7,500	(100 /	7,500) x	1000	1	3.33
500 ma		IM	112.5	7,500	(112.5	/ 7,500) x	1000		15

25

Example

Report of January levofloxacin use

- 300 doses of IV levofloxacin 750 mg
- 150 doses of PO levofloxacin 500 mg

DDD Correction Factor What's total DDD? Total amt Toal Total WHO Calculation LQ DDD Dose Route Dispensed (mg) amt (g) DDD 500 mg PO 75,000 75 / 0.5 150 150 75 0.5 IV 750 mg 300 225,000 225 0.5 225 / 0.5 450 LQ DDD DDD / 1000 pt days Route **Total pt days** Calculation 500 mg PO 150 7,500 (150 / 7,500) x 1000 20 IV 450 7,500 (450 / 7,500) x 1000 750 mg 60

Outcome Metrics: C. difficile Infections C. diff is a "two-hit" (IPC+AS) tracking & reporting disease C. diff surveillance definitions Classification Definition All infections summed to produce a figure of the total C. diff burden. **Total Infections Hospital-Associated** Patients with onset of diarrheat and diagnosis of C. diff more than 48 hours after hospital admission or within 48 hours after hospital discharge. Patients who had not been in the reporting hospital within the preceding Non-Hospital-Associated four weeks and were admitted with a C. diff diagnosis, or developed diarrhea within 48 hours of admission Patients with an episode of C. diff that occurred within eight weeks of a Recurrent previous episode of *C. diff* that resolved with or without therapy

29

AU Vendors

- All sites reporting must have either internal coding or external vendor
- Sample data set must be utilized and uploaded before you can upload "real" data to NHSN

Vendor Name	Vendor Software	Software Version/ Release	Date Passed Validation
Algo 🖸	Express AU™	2.0	01/14/2022
Allscripts Healthcare	Sunrise Clinical Manager	18.4	03/12/2020
Arnot Health	Arnot Health Analytics	5.0	02/15/2022
Ascension Technologies	Ascension Technologies	NA	12/18/2020

Source: NHSN CDA Submission Support Portal. Updated February 2022 AU SDS Vendors | NHSN | CDC

Stay Visible

Regular reporting allows for increased visibility of ASP interventions, successes AND potential identification for other opportunities

Maintain institutional support

- For providers, the notion of assessing ASP based on ROI may seem too fiscally oriented to apply to patient care
- Better to consider ASP in terms of value (outcomes, quality and experience, at the lowest possible financial cost)

Polling Question #5

Which of the following is true regarding antimicrobial use reporting through NHSN?

- 1. Sites may input data manually through the NHSN portal
- 2. Electronic uploads are allowed in a variety of different formats including CSV files.
- 3. Formatting NHSN data typically requires a validated system for CDA file completion which can be supplied by an external vendor or created at your facility if you have someone with advanced programming capabilities.

